Macrophage involvement for successful degeneration of apoptotic organs in the colonial urochordate Botryllus schlosseri.
نویسندگان
چکیده
Apoptosis is an important tool for shaping developing organs and for maintaining cellular homeostasis. In the colonial urochordate Botryllus schlosseri, apoptosis is also the hallmark end point in blastogenesis, a cyclical and weekly developmental phenomenon. Then the entire old generation of zooids are eliminated (resorbed) by a process that lasts 24-36 h. Administration of the antioxidant butylated hydroxytoluene (BHT) resulted in resorption being arrested by 1-8 days on average. At high doses (2.5-15.0 mg BHT l(-1)) resorption was completed only after removal of BHT. Colonies that were not removed in time, died. In treated colonies, although DNA fragmentation was high, tissues and organs that would normally have died, survived, and the general oxidative levels of lipids were reduced. Blood vessels were widened, containing aggregates of blood cells with a significantly increased proportion of empty macrophage-like cells without inclusion. In colonies rescued from BHT treatment, resorption of zooids started immediately and was completed within a few days. We propose three possible mechanisms as to how BHT may affect macrophage activity: (1) by interrupting signals that further promote apoptosis; (2) through the respiratory burst initiated following a phagocytic stimulus; and (3) by reducing lipid oxidation and changing cell surface markers of target cells. Our results point, for the first time, to the role of phagocytic cells in the coordination of death and clearance signals in blastogenesis.
منابع مشابه
The genome sequence of the colonial chordate, Botryllus schlosseri
Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel metho...
متن کاملUrochordate Histoincompatible Interactions Activate Vertebrate-Like Coagulation System Components
The colonial ascidian Botryllus schlosseri expresses a unique allorecognition system. When two histoincompatible Botryllus colonies come into direct contact, they develop an inflammatory-like rejection response. A surprising high number of vertebrates' coagulation genes and coagulation-related domains were disclosed in a cDNA library of differentially expressed sequence tags (ESTs), prepared fo...
متن کاملOntology for the Asexual Development and Anatomy of the Colonial Chordate Botryllus schlosseri
Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colon...
متن کاملWhole-mount fluorescent in situ hybridization staining of the colonial tunicate Botryllus schlosseri.
Botryllus schlosseri is a colonial ascidian with characteristics that make it an attractive model for studying immunology, stem cell biology, evolutionary biology, and regeneration. Transcriptome sequencing and the recent completion of a draft genome sequence for B. schlosseri have revealed a large number of genes, both with and without vertebrate homologs, but analyzing the spatial and tempora...
متن کاملAging in the colonial chordate, Botryllus schlosseri
What mechanisms underlie aging? One theory, the wear-and-tear model, attributes aging to progressive deterioration in the molecular and cellular machinery which eventually lead to death through the disruption of physiological homeostasis. The second suggests that life span is genetically programmed, and aging may be derived from intrinsic processes which enforce a non-random, terminal time inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 207 Pt 14 شماره
صفحات -
تاریخ انتشار 2004